Video modeling is a method of teaching in which a student learns by watching a model on a video tape demonstrating the target skill. Video modeling has been used in 22 single-subject design studies of students with ASD. These studies have included 60 subjects, both male and female. The participants have ranged in age from 3-21. Almost all of these children have had a diagnosis of autism; video modeling has also been used with one child diagnosed with PDD-NOS (Sherer et al., 2001), one child with Asperger’s syndrome (Nikopoulos & Keenan, 2003), and one child with autistic-like characteristics (Alcantara, 1994).

Video modeling has been used to teach a wide variety of skills. It has been used to teach social interaction behaviors (Apple, Billingsley, & Schwartz, 2005; Buggey, 2005; Charlop-Christy, Le, & Freeman, 2000; Maione & Mirenda, 2006; Nikopoulos & Keenan, 2003; Nikopoulos & Keenan, 2004; Taylor, Levin, & Jasper, 1999); academic skills (Kinney, Vedora, and Stromer, 2003); communication skills (Buggey, Toombs, Gardener, & Cervetti, 1999; Charlop & Milstein, 1989; Charlop-Christy et al., 2000; Sherer et al., 2001; Wert & Neisworth, 2003); daily living skills (Alcantara, 1994; Haring, Breen, Weiner, Kennedy, and Bednarsky, 1995; Shipley-Benamou, Lutzker, & Taubman, 2002); play skills (McDonald, Clark, Garrigan, & Vangala, 2005; Dauphin, Kinney, & Stromer, 2004; D’Ateno, Mangiapanello, & Taylor, 2003) and perspective taking (Charlop-Christy & Daneshvar, 2003; LeBlanc et al., 2003).

Video modeling has also been used to promote generalization of previously learned skills by showing the skill practiced in different settings (Haring, Kennedy, Adams, & Pitts-Conway, 1987).

No research has directly studied whether or not a child needs prerequisite skills to learn successfully with video modeling, or which children may be most likely to benefit. One study, in which some of the children acquired the skill and others didn’t, suggested that perhaps children with stronger visual skills will benefit more from video modeling (Sherer et al., 2001).

Research suggests that who the model is in the video modeling tape is not a critical feature of the video modeling tape. Different studies have successfully used adults (e.g., Charlop-Christy et al., 2000), peers (e.g., Haring et al., 1987), and even the target child himself (called self-modeling) (Buggey, 1999, 2005) as the model. Sherer et al. (2001) investigated the use of self modeling versus using other models during video modeling, and found both to be successful. Given that using the target child as the model can be difficult and time consuming, typically requiring prompting the child through the skill to make the video and then editing out the prompts, it seems logical to not use this form of tape as a first attempt. Another approach that has been used successfully is to make the tape from the perspective of the child learning the skill, showing only the hands of the model (Shipley-Benamou et al., 2002).

Researchers have used a number of different variations in the procedures in their video modeling procedures. In all research to date, the target students have watched the tape individually to learn the skill. Studies vary in how many times the child was required to watch the video tape per session; some studies only had the child watch the tape once per session (e.g., Nikopoulos & Keenan, 2003; others had the child watch the tape up to three times (e.g., Sherer et al., 2001).

In all of the video modeling research, the child watches the tape and then is presented with a similar situation where imitation is assessed. However, when the child is presented with the situation has varied. In some studies, the participants were presented with the situation immediately after viewing the videotape (e.g., Nikopoulos &
Keenan, 2005); in one study, the student watched the tape at home before going to bed and was asked to perform the skill the next day (Sherer et al., 2001); in another, the students watched the tape at the beginning of the school day for a skill to be performed later that day (Buggey, 2005).

Studies have attempted different ways to increase the success of video modeling. One method has been to use reinforcement, both to encourage the child to attend to the video and to encourage the child to perform the desired behaviors after watching the videotape. Charlop-Christy et al. (2000), for example, praised the children in their study for attending to the video; Shipley-Benamou et al. (2002) provided praise and a tangible reinforcement for 100% responding in their intervention. In teaching a long, complex skill, forward chaining has been used (Taylor et al., 1999). Other systematic instructional strategies, such as least-to-most prompting (Haring et al., 1987; Haring et al., 1995) have also been used in combination with the video modeling to teach the child the desired behaviors. One study (Apple et al., 2005) combined video modeling with self-management to increase the target skill.

In conclusion, there is strong evidence for the use of video modeling as an instructional method to teach skills to children with Autism Spectrum Disorders. Video modeling has been shown to be effective in teaching a wide variety of skills to a large number of children.

STUDIES USING VIDEO MODELING WITH STUDENTS WITH ASD

See more research briefs at the PDA Center website: http://depts.washington.edu/pdacent/